
User-centric authentication in Web 3.0

Björn Tackmann, DFINITY Foundation

Abstract

Humans are notoriously bad at managing secrets, which may be best

witnessed by the ubiquity of problems with passwords in Web 2. The seed

phrases used by most Web 3 wallet software, however, only amplify the

problem. Seed phrases, unlike passwords, are practically non-memorable,

so they have to be managed explicitly outside of the user’s brain. On most

blockchain platforms, there are also no built-in methods for key recovery

or rotation, so failures in safely and securely managing the secrets are im-

mediately catastrophic. So how can we enable non-expert users to safely

participate in Web 3?

Internet Identity is a non-custodial and self-sovereign blockchain au-

thentication system on ICP, which enables users to securely manage their

identity across multiple devices without ever explicitly touching crypto-

graphic secrets. Internet Identity achieves this by building on two main

technical foundations:

• Web authentication: Modern devices support secure management of

cryptographic key material using the FIDO and web authentication

standards. Instead of remembering different passwords for each ser-

vice, the user only requires a secure mechanism for unlocking their

device, and the device securely manages the secrets.

• Chain-key cryptography: The cryptographic mechanisms implemented

in ICP allow to untangle the single, static cryptographic key that rep-

resents the user’s identity on the blockchain from the multiple, more

ephemeral cryptographic keys held on the users devices and used for

authentication.

1



The user experience of Internet Identity revolves around the user’s identity

to which a user can associate multiple devices or recovery mechanisms. The

user can then use any one of their associated devices to authenticate toward

dapps in a user flow resembling the smooth “sign in with Y” products in

Web 2, while maintaining self-sovereignty.

This article describes the Internet Identity blockchain authentication sys-

tem, its technical foundations, and the vision for future development. The

article also discusses experiences from more than two years of production

use.

1 Introduction

Transactions in blockchain networks are authenticated using digital signatures.

Hereby, a digital signature scheme refers to a cryptographic mechanism in which

a client signs a message using their private cryptographic key. The verification

of the signature and thus the authenticity of the message, by contrast, is per-

formed relative to a public key, which is derived from the client’s private key.

Digital signature schemes were first proposed by Diffie and Hellman as one-way

authentication schemes in their seminal paper introducing public-key cryptogra-

phy [Diffie and Hellman, 1976].

Assets on a blockchain are associated with an address of the user (or the smart

contract) that holds the asset. For user-held assets, the address is derived from

the user’s public key. As a user’s assets on a blockchain are controlled through

transactions that are authorized via digital signatures, the security and accessibil-

ity of a user’s assets is directly dependent on the user’s ability to keep the private

signature key both secure and accessible. If a user’s private key was stored inse-

curely and exposed to some external party, that party would immediately be able

to transfer the user’s assets. Likewise, when a user loses access to their private

key, they also lose the capability of controlling their assets.

The device or program used to store the user’s private key is usually referred

to as a wallet. There are two fundamentally different types of wallets:

• In the case of custodial wallets, the user delegates the management of cryp-

tographic keys to a third party, the custodian. When the user intends to send

2



a blockchain transaction, they have to interact with the custodian. During

this interaction, the custodian usually authenticates the user. This authenti-

cation can be performed using with various methods ranging from standard

Web 2 mechanisms (e.g., username and password) to video calls in which

the custodian verifies the intent of the transaction with the user.

• A non-custodial wallet is a piece of software or hardware that is under con-

trol of the user and stores the cryptographic key. Examples of non-custodial

wallets include browser extensions such as MetaMask1 or hardware devices

such as the Ledger Name2 line of devices.

Custodial and non-custodial wallets have different characteristics and use cases,

which are not further discussed in this article. This article focuses on the case of

non-custodial wallets.

1.1 The problem of managing secrets

A non-custodial wallet, at its core, stores the user’s private signature key. Since the

key may have significant assets linked to it, the management of this key has two

somewhat conflicting requirements: First, the key must be kept secure, meaning

that it must be protected from access by people other than the legitimate owner.

Second, the key must be kept accessible, meaning that the owner must still be able

to access or recover the key even in case they, e.g., lose or break their devices that

store the key.

For backup purposes, most wallets support a standard called BIP-0039.3 Fol-

lowing this standard, a secret seed from which the cryptographic keys are derived

is encoded as a phrase consisting of 12 or 24 common words. Upon replacing

their device, the user initializes the new device using the seed phrase, the de-

vice decodes the seed and computes the cryptographic keys from it. The mecha-

nism was invented for Bitcoin but is nowadays supported universally in the Web 3

ecosystem.

1https://metamask.io/
2https://www.ledger.com/
3https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

3



The problem with BIP-0039 is that it requires the user to record the seed phrase

in a way that is:

1. protected from access by other people, but

2. can be reliably retrieved in case the user needs to recover the wallet after a

software upgrade or on a different device.

For tech savvy users that set up a system for high-value transactions, this is usually

not a problem. The user will prepare a sheet of paper (or a more durable material

such as metal), which will later be stored in a safe or a bank locker for backup

access after the seed phrase has been recorded. For more casual use, however, the

seed phrase flow is a major obstacle: users that spontaneously set up a new wallet

may not have a way to record the seed phrase in that moment at all, or they may

record the phrase in a way that is either not properly protected and can be stolen or

(more likely in practice) they will not remember where they kept the seed phrase

when they need to recover it later.

What is thus needed is a method that is easy to set up and maintain and does not

require the user to explicitly manage cryptographic key material. Internet Identity

(in short: II), the blockchain authentication system described in this paper, solves

this problem based on web standards as well as the features of the ICP blockchain.

Outline

Section 2 introduces basic terminology required for the main part of the paper.

Section 3 describes the user perspective on Internet Identity; how an identity is

created, used, and maintained. The system architecture is then detailed in Sec-

tion 4, before Section 5 provides a high-level overview of the cryptographic pro-

tocols. Section 6 describes some security properties of Internet Identity. Section 7

contains insights from more than two years of production use, and Section 8 lists

planned extensions and improvements for future releases.

4



2 Background

2.1 Web authentication and FIDO

Web authentication4 is a standard published by the W3C that enables web applica-

tions to access secure cryptographic authentication mechanisms. Web authentica-

tion was initially designed in the context of two-factor authentication (2FA), where

the first authentication factor—typically a password—is complemented with a

second factor—typically a device that the user holds. This device could be the

user’s mobile phone or computer, or a dedicated security device that is attached to

the user’s phone or computer via USB or NFC.

Web authentication is particularly well-suited to counter phishing attacks, in

which a user is tricked into entering their credentials for some trusted web site

into a fraudulent web site owned by an attacker. The attacker records the user’s

credentials, and can subsequently use them to perform malicious transactions on

the user’s behalf. Web authentication prevents this attack by binding the 2FA au-

thenticator to the domain of the web site: As long as the attacker cannot obtain

a valid TLS certificate for the domain of the trusted web site, the binding reli-

ably prevents the user from accidentally using the authenticator on the attacker’s

fraudulent web site.

The cryptographic keys used in web authentication were initially thought of

as being tied to the authenticator device. Services offering 2FA would then offer

a method for replacing the authenticator to deal with the case In which the device

got lost or stolen. Since Apple and Google developed protocols for securely syn-

chronizing these cryptographic keys across multiple devices, web authentication

has recently been suggested as primary user authentication mechanism, replacing

the password entirely. In this context, the web authentication keys are often re-

ferred to as passkeys, which is also the terminology we adopt in the remainder of

this work.
4https://www.w3.org/TR/webauthn-2/

5



2.2 Threshold cryptography

In a threshold cryptosystem, a group of n parties jointly maintains a cryptographic

key in a way that for some specified value t ≤ n, referred to as the threshold,

any t-out-of-n parties can jointly perform cryptographic operations, but any less-

than-t parties cannot. A threshold (digital) signature is a cryptographic protocol

in which n parties jointly hold a private key, such that for a given threshold t,

any t-out-of-n parties can jointly sign a message, but any less-than-t cannot. The

concept of threshold signature dates back to [Desmedt and Frankel, 1991].

2.3 ICP and chain-key cryptography

ICP—the Internet Computer Protocol [The DFINITY Team, 2022]—is a block-

chain protocol that makes heavy use of threshold cryptography, especially the BLS

cryptosystem proposed by [Boneh et al., 2004] and its threshold variant proposed

by [Boldyreva, 2003]. A practical deployment of threshold signatures, however,

requires a lot more than a bare threshold signature scheme: it also needs protocols

for securely generating the key shared among the participants in a way that no sin-

gle party ever controls the key, as well as for re-sharing the key upon membership

changes as old nodes disappear and new nodes come online. Such protocols can

be built based on distributed key generation protocols such as the one originally

proposed by [Pedersen, 1991]. In the context of ICP, the entire suite of protocols

used for maintaining and using the threshold signature key is usually referred to

as chain-key cryptography, alluding to the fact that the blockchain protocol main-

tains the private signature key.

One main consequence of chain-key cryptography is that external parties do

not need to maintain a copy of the entire blockchain to validate artifacts processed

by the chain, such as output values computed by smart contracts. Everything the

external parties need in order to validate an artifact is the public key of the chain

and a signed certificate for the artifact. In a bit more technical detail, after pro-

cessing one round of transactions, ICP nodes threshold-sign the computed state,

which includes the outputs computed by all canisters. (For efficiency, individ-

ual outputs computed, e.g., in the same round can be authenticated together by

6



means of a Merkle tree [Merkle, 1987]. The certificate then contains the thresh-

old signature and the Merkle tree path for the relevant artifact.) This not only

enables blockchain applications that achieve full security while running on con-

strained devices or within a web browser, it also enables horizontal scaling of the

blockchain protocol: The ICP network consists of multiple subnets, each of which

is based on its own blockchain, and these subnets can interact securely with very

low overhead.

2.4 Terminology

To remain consistent with existing literature on ICP, we adopt the same termi-

nology. Smart contracts on ICP are referred to as canisters. Canisters do have

more general properties than smart contracts on other platforms, such as an ex-

plicit notion of controller, but these differences will not be relevant in the context

of this paper. The API of a canister consists of functions that can be called with

arguments. Transactions sent to ICP are referred to as (ingress) messages. Each

ingress message invokes a function on a canister with a specified argument. Each

user and canister has a principal, which is the same concept often referred to as

address in other blockchain platforms. The principal of the caller of a function,

which may be a user or another canister, is exposed to the invoked canister.

3 The user perspective

The user experience of Internet Identity resembles the one known from Web 2.

The user’s internet identity, which is identified by a sequence number, looks and

feels almost like an account in Web 2. This is despite the fact that II is a fully

self-sovereign method of authentication, with the record of the user data relevant

for verifying the authenticity of the user stored on the blockchain. More techni-

cally, the user’s record contains the public keys corresponding to each of the user’s

passkeys. The user can use the II frontend5 to manage their internet identity, or

rather the record of their data stored on the blockchain. For instance, the user can
5https://identity.ic0.app/

7



add or remove additional passkeys or account recovery mechanisms to or from the

user record. The frontend also allows to recover the account using any one of the

registered mechanisms.

3.1 The creation flow

A user that visits the II frontend for the first time is asked to create a new internet

identity. This involves, as a first step, the creation of a new passkey on the user’s

device. In this process, the device will prompt the user to provide an authentica-

tion gesture, which may be presenting the face or a fingerprint or simply touching

an external security device. As a next step, the user is prompted to solve a simple

CAPTCHA, which serves as a simple countermeasure against bots. Finally, the

user is presented a (currently 7-digit) number, which serves as the identifier of the

user’s internet identity. The creation flow is usually completed in less than one

minute.

3.2 The authentication flow

Web applications that support authentication via II generally display a button la-

beled “sign in with Internet Identity,” or similar. Upon clicking the button, the II

frontend opens in a new browser tab, in which the user then approves the authen-

tication attempt as well as the use of the passkey. Using the passkey will require

the user to provide the same authentication gesture as creating it (cf. Section 3.1).

After the user is authenticated, the browser tab with the II frontend closes and the

user is directed back to the application.

3.3 The management flow

If a user’s internet identity is controlled through a single passkey, accessing this

identity may be impossible if the device on which the passkey is stored is lost or

stolen. Therefore, it is strongly suggested to add multiple passkeys or a recovery

mechanism to the identity.

Users can maintain their internet identities by visiting the II frontend. After

selecting the desired identifier, the user is asked to approve the use of the associ-

8



ated passkey, after which the user is forwarded to a management page displaying

the currently registered passkeys and recovery mechanisms. On this page, new

passkeys or recovery devices can be added, which is described in Section 3.4.

Passkeys and recovery devices that are no longer functional or needed can be

deleted.

3.4 The device addition flow

In case a user’s passkeys are not automatically synchronized across all the user’s

devices, multiple passkeys can be associated to the same identity. All passkeys

have equivalent capabilities, which implies that the user can use web applications

from all registered devices seamlessly. The flow for adding a new passkey can

be initiated from the II frontend on either (i.e., existing or new) device. When

initiated from the existing device, a link (and QR code) is displayed that needs to

be visited on the new device. Upon visiting the link, the new device generates a

new passkey (authenticating the user in the process) and displays a 6-digit code,

which then has to be entered on the existing device. Once this step is completed,

the internet identity can be accessed from both devices.

II urges the user to additionally add a recovery mechanism. Currently, two

types of mechanisms are supported. The first type is using an additional passkey,

such as one stored on an external security device. The second type is using a

BIP-0039 seed phrase, which is generated in the II frontend.

Supporting BIP-0039 seed phrases as recovery mechanisms may seem surpris-

ing; wasn’t one goal of II to liberate the user from the burden of maintaining seed

phrases? Indeed, and the addition of a seed phrase is entirely optional, the identity

can be safely maintained via multiple passkeys. Also, the recovery seed phrase

can be set up and replaced at any point in time, whenever it is convenient for the

user.

4 System architecture

The II blockchain authentication system consists of three core software compo-

nents: The backend, a canister smart contract running on ICP; the frontend, which

9



runs as a web application in the user’s browser; and the authentication client, a

library used by web applications that support authentication with II.

The backend canister. The backend canister stores all data relevant for user

authentication, which includes the public keys associated with the users’ passkeys

and some additional metadata (e.g., whether a passkey is used for authentication or

recovery). The backend canister serves as smart contract that encodes the rules for

modification of a user’s records. The canister also serves the frontend application

into the user’s browser.

The frontend application. The II frontend runs in the user’s web browser. It

enables the user to modify the data in the backend canister, such as by adding

or removing passkeys and recovery mechanisms. The frontend also supports the

authentication flow used by applications. Passkeys used for II are associated with

the URL of the II frontend, https://identity.ic0.app/.

The authentication client. Web applications that integrate with II can use a

library referred to as authentication client. The library offers a simple interface for

application developers and manages the in-browser interaction with the II frontend

during the authentication flow.

5 The Internet Identity protocol

As described in Section 1, blockchain transactions are authenticated by digital sig-

natures, and the principal of the user sending the transaction is derived from the

cryptographic key used to sign the transaction. This means that assets and capa-

bilities are bound to the cryptographic keys that the transactions are signed with.

In order to support the control of assets from multiple devices with (potentially)

different passkeys, II has to dissociate the passkey stored on the user’s device from

the principal used to control assets on chain.

II achieves this dissociation by introducing a layer of indirection: The passkeys

stored on the user’s devices serve as a means of authentication toward the II back-

end canister. All the user’s assets are then associated to a principal that is under

10



the control of that backend canister. The remainder of this section describes how

the II protocol enables the backend canister to achieve its functionality.

5.1 Canister signatures

ICP subnets use threshold signatures to certify the state of the subnet after each

round of computation (cf. Section 2.3). The subnet state contains so-called cer-

tified variables that can be written by canisters. A certified variable can then be

efficiently verified by anyone using the subnet public key and the certificate for

the variable written by a canister.

Certified variables can be used to define a (pseudo-)signature scheme for can-

isters, which is referred to as canister signature6: The canister writes the message

it intends to sign into a certified variable, and the certificate for the variable be-

comes the digital signature in the signature scheme. The public key relative to

which this new signature can be verified consists of the subnet’s public key and

the signing canister’s principal, along with some canister-chosen auxiliary data.

Canister signatures can be used to authenticate ICP transactions. The caller

principal of such a transaction is derived from the canister principal and the spec-

ified auxiliary data. Looking forward, the auxiliary data allows the II backend

canister to generate different principals for different users and different contexts.

Beyond that, however, the functionality of signing transactions by itself may not

seem particularly useful; in the end, a canister can send messages to other canisters

directly on chain, so why would it be helpful for the canister to sign a transaction?

This becomes clear in the following section.

5.2 Delegations

Recall that the caller principal of an ingress message is derived from the signature

public key that the message is signed with. ICP additionally supports a notion of

delegation from one public key A to a second public key B. This allows the user

to sign a message with public key B and send it to the blockchain together with

6https://internetcomputer.org/docs/current/references/

ic-interface-spec#signatures

11



the delegation from A to B, which will result in the call being executed with the

caller being set to the address derived from public key A.

The II backend canister uses the concept of delegation to delegate from the

canister-controlled user (pseudo) public key to an actual key controlled by the

web application running in the user’s browser. Prior to the authentication flow,

the web application generates a fresh signature key pair that corresponds to key B

above. During the authentication flow, this session key is sent to the II backend

canister, which signs a delegation from the (pseudo) public key associated with

the user (which corresponds to key A above) to the session key. The delegation

is returned to the web application, which can then sign further ingress messages

with the session key.

5.3 Protocol flow

The complete protocol flow (on an abstract, cryptographic perspective) is then as

follows:

• The user visits the web application. Upon the user clicking the button “sign

in with Internet Identity,” the II frontend opens in a new browser tab. The

application generates a fresh signature key pair, holds the private key in

the browser memory, and sends the public key to the II frontend via an in-

browser message passing protocol.

• The II frontend generates a message that includes the newly generated pub-

lic key. Upon the users approval, the message is signed using web authenti-

cation and sent to the II backend canister.

• The II backend canister validates the authority of the user and signs, using

canister signatures with the public key associated to the user, a delegation

toward the session public key provided in the ingress message.

• The II frontend retrieves the signed delegation from the II backend canis-

ter and forwards it to the application, again using the in-browser message

passing protocol.

12



• The application signs blockchain transactions with the session public key,

and includes the delegation from the II backend canister. This ensures that

the caller attribute of the respective transactions is set to the user’s identity

that is controlled through the II backend canister.

6 Security

While a full analysis of the security if Internet Identity is beyond the scope of this

paper, a few relevant security properties should be pointed out.

Isolation between different applications. As described in Section 5, an appli-

cation that supports authentication with II receives, as result of the authentication

flow, a delegation that allows the application to send messages using the user’s

principal to canisters on ICP. If multiple applications were to use the same user

principal, security problems would arise: Suppose one of the applications is en-

trusted with maintaining valuable assets, while some other one is not. The second

application, however, would have equal access to all assets maintained by the first

application. Therefore, II derives a different principal for each application even

for the same user. This is achieved by including the domain name of the applica-

tion in the auxiliary data mentioned in Section 5.1. The use of the domain name as

a separating property between different applications is consistent with the browser

security model, which determines access based on the notion of origin that also

includes the domain name.

The use of different user principals for different applications also impedes

traceability of the same user across multiple devices and thus provides a certain

level of privacy.

Storage of cryptographic keys. Devices that support web authentication gen-

erally store passkeys in specific secure chips, and the private keys cannot be ex-

ported to the operating system or even applications. Assuming the security of the

secure hardware chips, the passkeys cannot be extracted even if the user’s device

gets infected with malware or stolen.

13



The fact that keys are stored securely does, however, not entirely rule out at-

tacks via malware: As the user has no possibility to securely validate the message

that is signed, malware on the user’s device could replace a legitimate message

that a user intends to sign with a fraudulent one before it is signed by the secure

chip. In that sense, the security level is lower than with specialized hardware

wallets that allow the user to validate the transaction details.

Security of the II canister. The II backend canister is developed as open-source

software,7 and upgrades to the canister are rolled out through ICP’s decentralized

governance system. This process ensures a high level of transparency.

7 Practical experience

Internet Identity was developed by the DFINITY Foundation and launched in May

2021 together with the ICP blockchain. Since then, the II canister is controlled

through ICP’s decentralized governance system. The further development of the

Internet Identity protocol and its implementation is performed by DFINITY in

collaboration with the ICP community. The subsequent paragraphs describe a few

of the learnings the DFINITY team made since then.

Apple devices deleted web authentication keys. In Apple’s implementation of

web authentication up to iOS 15, cryptographic keys used in web authentication

were strictly bound to the device on which they were generated. Somewhat sur-

prisingly, upon clearing the browser history and cache, the web authentication

keys would also get deleted. The effect of this behavior was that users would get

locked out of their internet identities, requiring recovery.

The treatment of these keys changed completely in iOS 16 with Apple’s in-

troduction of the term passkey. Since then, the keys are synchronized between

different devices via iCloud. They are also no longer deleted upon clearing the

browser history and cache.

7https://github.com/dfinity/internet-identity/

14



Windows is different. Most platforms, including iOS, macOS, Android, as well

as external security devices, generally use the ECDSA signature scheme, which is

nowadays used ubiquitously on the web. Microsoft’s Windows Hello, by contrast,

is based on the older RSA signatures, whose use is otherwise generally discour-

aged. RSA signatures were not supported in the initial deployment of II, support

was added in a later release.8

Users do not read warnings. Initial revisions of the II frontend supported un-

safe operations such as the removal of all passkeys from an internet identity. While

these operations were only performed after the user acknowledged multiple warn-

ings about the deletion of the current and last passkey, several users contacted

DFINITY for help after still performing these actions. Current revisions instead

entirely block such unsafe behavior.

8 Future directions

Internet Identity has seen significant improvements since the first release in 2021,

especially in terms of user experience. Several further features are currently

planned or under development.

Attribute support. The II protocol as discussed in this paper is an authentica-

tion mechanism, but it currently falls short of being a full identity solution: The

reason is that no attributes (such as age, nationality, academic credentials) can cur-

rently be assigned to the user’s principal. Canisters can rely on the caller attribute

of transactions to be set securely, but they do not know anything else about the

user. Work toward supporting W3C verifiable credentials9 in II is underway and

close to completion.

Cryptographic privacy. As discussed in Section 6, the same user has differ-

ent principals when using different applications. While this impedes traceability

8https://medium.com/dfinity/windows-hello-support-added-to-internet-identity-e9021f74afe9
9https://www.w3.org/TR/vc-data-model/

15



across different applications, it does not achieve anonymity in a strong, crypto-

graphic sense. Based on advanced threshold cryptography that is currently be-

ing integrated in ICP, full cryptographic anonymity will be possible in the fu-

ture [Cerulli et al., 2023].

Additional recovery mechanisms. The currently supported recovery operations

(designated passkey, seed phrase) achieve a high level of self-sovereignty, but

come at the cost of shifting significant operational responsibility to the user. Ad-

ditional mechanisms such as social recovery (delegating authority to one or more

friends) or support for professional recovery providers can be added to the proto-

col without major technical complications. By keeping the use of such features

optional, II can serve both the (technically more proficient) users that have a pref-

erence for full self-sovereignty and the users that are willing to compromise on

self-sovereignty for the benefit of easier management.

Acknowledgment

I would like to thank all researchers and engineers that contributed to the protocol

and code, including Bartosz Przydatek, Christoph Hegemann, Frederik Rothen-

berger, Islam El-Ashi, Joachim Breitner, Mary Dwyer, Michel Abdalla, and Nico-

las Mattia.

References

[Boldyreva, 2003] Boldyreva, A. (2003). Threshold signatures, multisignatures

and blind signatures based on the gap-diffie-hellman-group signature scheme.

In Desmedt, Y., editor, Public Key Cryptography, volume 2567 of Lecture

Notes in Computer Science, pages 31–46. Springer.

[Boneh et al., 2004] Boneh, D., Lynn, B., and Shacham, H. (2004). Short signa-

tures from the weil pairing. J. Cryptol., 17(4):297–319.

16



[Cerulli et al., 2023] Cerulli, A., Connolly, A., Neven, G., Preiss, F.-S., and

Shoup, V. (2023). vetKeys: How a blockchain can keep many secrets. Cryptol-

ogy ePrint Archive, Paper 2023/616. https://eprint.iacr.org/2023/616.

[Desmedt and Frankel, 1991] Desmedt, Y. and Frankel, Y. (1991). Shared gen-

eration of authenticators and signatures (extended abstract). In Feigenbaum,

J., editor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages

457–469. Springer.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. E. (1976). New directions

in cryptography. IEEE Transactions on Information Theory, 22(6):644–654.

[Merkle, 1987] Merkle, R. C. (1987). A digital signature based on a conventional

encryption function. In Pomerance, C., editor, CRYPTO, volume 293 of Lecture

Notes in Computer Science, pages 369–378. Springer.

[Pedersen, 1991] Pedersen, T. P. (1991). A threshold cryptosystem without a

trusted party (extended abstract). In Davies, D. W., editor, EUROCRYPT, vol-

ume 547 of Lecture Notes in Computer Science, pages 522–526. Springer.

[The DFINITY Team, 2022] The DFINITY Team (2022). The internet computer

for geeks. Cryptology ePrint Archive, Paper 2022/087. https://eprint.

iacr.org/2022/087.

17


